Early Trigonometry

Calculations

 used toDetermine Distances

Across Impassable Obstacles during the early

Government Land Surveys

1858

Jerold F. Penry, $L S$

During the early government land surveys in Nebraska, the deputy surveyors occasionally had to determine the distance across bodies of water or areas that could not be measured by staying on a straight line. In the case of crossing rivers or lakes, when an offset line was not an option, trigonometry had to be used. It was also not always feasible to establish a right angle triangle to easily determine the required distance. Trigonometry involving oblique triangles was then used, but this required a higher degree of math. Usually, only the deputy surveyor was capable of doing such calculations. Without the aid of modern calculators to assist in the calculations, the surveyor carried a book of logarithms. Using logarithms required only having to perform addition and subtraction.

The example that follows are notes taken by U. S. Deputy Surveyor Charles A. Manners while surveying the Base Line between the states of Kansas and Nebraska in 1858. In a stretch of three miles, the crew had to cross the Republican River four times. Normally this river would not have required the use of trigonometry, but during the time of the survey it was at flood stage and was 5^{\prime} to 8^{\prime} deep.

The usual method in using trigonometry was to first establish a witness point on the near side of the non-navigable river where the instrument was then set up over this point. (A "witness point" is the correct term used instead of "meander corner" when the river was not navigable or meandered). The flagman was sent across the river where he established another witness point on the opposite bank. This second point was placed on the surveyed line. From the instrument point, a baseline was established either upstream or downstream along the bank where a temporary point was placed at the far end of the baseline. The baseline was accurately measured with the chain.

While sighting the flagman on the opposite side of the river, the instrumentman turned the angle to the temporary point at the opposite end of the baseline. The instrumentman then moved to the temporary point at the far end of the baseline, sighted the flagman across the river, and turned the angle to the point on the near side of the river where he was initially set up. The crew now had two measured angles and one measured distance of the oblique triangle which was sufficient to determine the other unknown distances and angles through trigonometry using logarithm tables.

The following notes are the Original Government Field Notes of Charles A. Manners describing the four crossings of the Republican River.
(The retyped notes follow these pages).
Those notes in blue are for the example at the end.

Bace dine, Clange 6 thic

 L6, \$4 adede to 6, 2 onader vo er clavi.

 Lind livel bittow-elace vandy 2 "rater,

Baw dive Pangery Weat ellong the frecth brindary of 4en 36. \& I N Sthest on a turu lince.

20 Mo.
2630 daturnted leftband of, ivico. lining N. 200 Hi and
 un insiandione for a Hitrefo Print Le ottion distaricu arog f piniex, dect a flug us luse or theright triver and theirfron the thitrice Print en left bext of Pixex, menculed a shave N22.th seocho. to a tation funv entich the flug onprifth bevici bens

 then arreet. Guily 18 , 1858.
-'o bo dotenct in Iteand ainc disen ehasulititive arpex. inuturation for ift ree ens

Fe $\rho 250$ If Ese bet pret with clarred vtacte. as per wistur etive fre Hitxos ferict, forw colieh A butmiosed, It sin dia tuen λ. So.6. os let diat. A brumiwed, 10 in dia bean d 20.14 20 lke diet: Mo blain dicitaince acrof siver, op prdueed

Bone Siner Pargé 2 that at the omen armet in bestad ien its truepened Sulech the prict wher de tang perary pocze thand the lift hank of parion as the mumiectmitrout
 as per initraction, 384 Ul. Itex of the tries comen fra, tisnef Gour t een 3ozer frow which
 Obxamoned, Bicidia, dene d 7% - It If Men dith.

 fand luch vandy toulow Sail 2 trow.

aflong the davet trondary of see or. al ite ciflest, a treec lince,

潞 110 家

 inistrustion gix yo ve coro

Topographic map of the Republican River at Superior, Nebraska.

Along the South boundary of Sec. 32, T1N, [R6W].
West on a true line.

Va. $11^{\circ} 55^{\prime} E$.
35.46 [chains] - Intersected the left bank of River, bearing S. 40° E. and N. $40^{\circ} \mathrm{W}$. and Set Post in Mound with charred stake as per instructions for a "Witness Point".

Base Line. Range 6 West

To obtain the distance across the river, I caused a flag to be set in line on the right bank and then from the Witness Point on the left bank measured a base N. $40^{\circ} 16^{\prime}$ W., 3.84 chains to a Station from which the flag on the right bank bears S. $68^{\circ} 18^{\prime}$ W., making the distance across the river $=9.84$ chains .
[Diagram]
As the Sine of $21^{\circ} 42^{\prime}=\quad \underline{9.567904}$
Is to the Sine of $108^{\circ} 34^{\prime}=9.976787$
So is the Base 3.84
0.584331
10.561118
$\underline{9.567904}$
To dist across $=9.84$ chains $=$ Log. 0.993214 .
45.30 [chains] - Intersected the right bank of the river bearing N. $35^{\circ} \mathrm{W}$. and S. $35^{\circ} \mathrm{E}$., 5.30 chains West of the $1 / 4$ sec. cor. at which point I set Post for a Witness Point and also for a Witness to the $1 / 4$ sec. cor. from which
post
A Willow 5 in. dia. bears S. 27° E, 29 links distant.

Base Line. Range 6 West
A Cottonwood 20 in. dia. bears N. 35° W., 249 links distant.
80.00 [chains] - Set post in mound and drove charred stake, as per instructions
for cor. to sections $31 \mathcal{E} 32$.
Land level bottom prairie. Soil sandy $2 n d$ rate.
Scattering Cottonwood \& Willow trees skirting the banks of the Stream.
Along the South boundary of Sec. 31, T1N, [R6W].
West on a true line.
Va. 1150' East
40.00 [chains] - Set post in mound and drove charred stake, as per instructions for $1 / 4 \mathrm{sec}$. cor.
46.34 [chains] - Intersected the right bank of river bearing N. 10° E., and S. $10^{\circ} \mathrm{W}$. and Set a post in Mound and drove charred stake as per instructions for a "Witness point".
To obtain the distance across the river, I set a flag in line on the left bank and from Witness Point on the right measured a base South 5.00 chains to a Station from which the flag on the left bank bears $N .53^{\circ} 18^{\prime} W$., making the distance across the river 6.71 chains.

Base Line. Range 6 West

Nat. Tang: $53^{\circ} 18^{\prime}=1.341602$
Distance across river $=\frac{5}{6.7080145}$
46.34 added to 6.71 makes 53.05 chains.
53.05 [chains] - Intersected the left bank of River bearing N. 10° E. and S. $10^{\circ} \mathrm{W}$. and Set a Post for Witness point from which
A cottonwood, 9 in. dia. bears N. 89° W., 31 links distant.
A willow 3 in. dia. bears $S .2^{\circ} \mathrm{W}$., 17 links distant.
Enter timber on left bank of River bearing with bank.
60.00 [chains] - Leave timber and enter Prairie bearing N. 30° E. and S. $30^{\circ} \mathrm{W}$.
80.00 [chains] - Set post in mound and drove charred stake as per instructions for cor. to

Township one North, Ranges $6 \mathcal{E} 7$ West.
Land level bottom - Soil sandy 2nd rate.
Timber, Cottonwood and Willow.

Along the South boundary of Sec. 36, T1N [R7W].
West on a true line.
Va. 11050' E.
26.30 [chains] - Intersected left bank of river bearing N. $25^{\circ} \mathrm{W}$. and S. 25° E. and Set Post in Mound and drove charred stake as per instructions for a Witness Point.
To attain distances across river, I set a flag in line on the right bank and then from the Witness Point on left bank of river, measured a base N. $22^{\circ} \mathrm{W}$. , 5.00 chains to a station from which the flag on right bank bears S. $46^{\circ} 55^{\prime} W$., making distance across on line 6.83 chains.
[Diagram]

Base Line. Range 7 West

As Sine is $43^{\circ} 05^{\prime}=$	$\underline{9.834460}$
Is to Sine $68^{\circ} 55^{\prime}$	$\underline{9.969909}$
So is 5.00 ch. Log: $=$	$\underline{0.698970}$
	$\underline{10.068879}$
To dist across $6.83 \mathrm{Log}=$	$\underline{\underline{0.834460}}$

6.83 added to 26.30 makes 33.13 chains
33.13 [chains] - Intersected right bank of river bearing N. $25^{\circ} \mathrm{W}$. and S. $25^{\circ} \mathrm{W}$. and Set post for a Witness Point from which
A Willow 5 in. dia. bears N. 60° W., 7 links distant.
A Willow 5 in. dia. bears S. 64° E., 18 links distant.
Compared measuring chains with Standard and found them correct. July 18, 1858.
40.00 [chains] - Set post in Mound and drove charred stake as per instructions for $1 / 4 \mathrm{sec}$. cor . 60.00 [chains] - Leave prairie and enter Timber, bearing S.W. \& N. 60° E.
77.00 [chains] - Intersected right bank of River again, bearing N. 25° E. and S. $25^{\circ} \mathrm{W}$. and Set post with charred stake as per instructions for a Witness point, from which A Cottonwood 14 in. dia. bears N. 20° E., 28 links distant.
A Cottonwood 10 in. dia. bears S. 20° W., 22 links distant.
To obtain distance across river, I produced
the line to the left bank and at this point of Intersection, Set a temporary post from which I measured a base N. 19° E., 6.00 chains to a station, from which the Post at the Witness Point on right bank bears S. $40^{\circ} 45^{\prime}$ E. - making the distance across river $=6.84$ chains.

[Diagram]

Nat. Sine $49^{\circ} 15^{\prime}=.7575650$
Nat. Sine $59^{\circ} 45^{\prime}=.8638355$
.7575650 . . $8638355:: 600$ links
$.7575650) \frac{600}{518.3013000}$
$\frac{45453900}{63.762300}$
$\frac{60605200}{31571000}$
$\frac{30302600}{1268400}$
6.84 chains added to 77.00 chains makes 83.84 chains
Consequently the post on left bank of river is 3.84 chains
West of corner to sections 35 and 36, thence at
80.00 [chains] - Corner in river - inaccessible.

Base Line. Range 7 West
As the corner cannot be located in its true place, I select the point where the temporary post stands on the left bank of the River as the nearest suitable Witness point, and there Set post with charred stake as per instructions, 384 links West of the true corner for a Witness Corner to sections $35 \mathcal{E} 36$ from which
A Cottonwood, 20 in. dia. bears N. 20° E., 213 links distant.
A Cottonwood, 8 in. dia. bears S. 71_{2}^{2} W., 117 links distant.
A Cottonwood 10 in. dia. Bears S. 16° E., 42 links distant.
A Cottonwood, 8 in. dia. bears N. 43° E., 61 links distant.
Land level, sandy bottom - Soil 2 nd rate.
Timber chiefly Cottonwood, open woods.

Along the South boundary of Sec. 35, T.1N. [R7W]
West on true line.
Va. $11^{\circ} 50^{\prime}$ E.
3.84 [chains] - Intersected the left bank of river bearing N. 20° E. and S. $20^{\circ} \mathrm{W}$. at the witness corner to Sec's $35 \mathcal{E} 36$.
Leave Timber and enter prairie bearing with the bank.
40.00 [chains] - Set post in Mound and drove charred stake as per instructions for $1 / 4 \mathrm{sec}$. cor .

— = MEASURED BASE LINE
= = RIVER CROSSING (CALCULATED)
"."."."." = THIRD LEG OF TRIANGLE

River Crossing No. 1

1. Survey to the near bank of the river and set a point for a Witness Corner.

Chaining is now at $\mathbf{3 5 . 4 6}$ chains from the last section corner.
2. Occupy the Witness Point just established.
3. Send the flagman across the river and set a point on the opposite bank of the river for a Witness Corner by sighting across the river on the surveyed line.
4. Establish and measure a baseline along the near bank of the river from the first Witness Corner.

Baseline measures to be 3.84 chains.
5. While occupying the Witness Corner on the near bank which is also the first end of the baseline, sight the Witness Corner on the opposite bank and turn the angle to the temporary point at the far end of the baseline.

Angle $=\underline{49^{\circ} 44^{\prime}}$
6. Move the instrument to and occupy the temporary point on the far end of the baseline. Sight the other end of the baseline that is also the Witness Point on the near bank. Turn the angle between the Witness Point on the near bank to the Witness Point on the opposite bank.

Angle $=\underline{108^{\circ} 34^{\prime}}\left(\right.$ Supplementary angle $\left.=\underline{71^{\circ} 26^{\prime}}\right)$
(Note: The supplementary angles have the same Log value).
7. Two measured angles and one measured line of a triangle are now known.
8. Compute the missing angle that is at the Witness Point at the opposite bank. $180^{\circ}-108^{\circ} 34^{\prime}-49^{\circ} 44^{\prime}=\underline{21^{\circ} 42^{\prime}}$ (Or for a check turn the angle after crossing the river).
9. Obtain the logarithms from tables in the book.

Sine $21^{\circ} 42^{\prime}$ from logarithm tables $=\underline{\mathbf{9 . 5 6 7 9 0 4}}$
Sine of $108^{\circ} 34^{\prime}$ (or the supplementary angle $71^{\circ} 26^{\prime}$) from logarithm tables $=\underline{9.976787}$
Base distance 3.84 from logarithm tables $=\underline{\mathbf{0 . 5 8 4 3 3 1}}$
$9.976787+0.584331=\underline{10.561118}($ Addition $)$
$10.561118-9.567904=\underline{0.993214}$ (Subtraction)
Logarithm of $0.993214=\underline{\mathbf{9 . 8 4}}$ chains (This is the distance across the river between the Witness Points).
$9.84+35.46=\underline{45.30}$ chains. (This is the location of the Witness Corner on the opposite bank).

T A B L E S
 0 F
 LOGARITHMS OF NUMBERS

AND OF
SINES AND TANGENTS

FOR EVERY

TEN SECONDS OF THE QUADRANT,

WITH OTHER USEFUL TABLES.

BY ELIAS LOOMIS, A.M.,

 Gzomititar And conic skctions."

NEW YORK:
HARPER \& BROTHERS, PUBLISHERS, 82 CLIFF STREET.
1848.

Logirithme op Nembers.

	N.	0	1	2	3	4	5	6	7	8	9	D.
	362	558709	8899	8948	9068	9188	9308	9428	9548	9^{667}	97^{87}	130
	363	9907	.. 26	. 146	. 265	. 385	. 504	. 624	. 743	. 863	.982	
	364 365	5611 or	1221	1340	1459	1578	1698	${ }_{4}^{1817}$	1936	2055	${ }_{2174}$	119
	365 366	2293	2412	${ }^{2} 51 \mathrm{r}$	2650	${ }^{2} 769$	${ }^{2887}$	3006	3125	3044	3368	13
	366 367	3481	3600	${ }^{3} 718$	3837	3955	4074	4192	4311	4429	4548	
	$\begin{array}{r}367 \\ \\ \\ \\ 368 \\ \hline\end{array}$	4566 5348	4784 5666	4903 6084	5021	5136 6390	5257 6437	5376 6555	5494 6673	5612	${ }^{5} 730$	118
	369	7036	7144	7262	$7^{3} 79$	${ }_{7497}$	6437 7614	$77^{3} 2$	7349	6791 7687	6909 8084	
	370	8802	8319	8430	8554	8671	8783	8905	9023	9140	9257	117
	371	9374	9491	9608	9725	9842	${ }_{9959}$	$\cdots 76$.193	. 309	. 486	
	372	570543	066\%	0776	-893	1010	1125	1243	1359	$1 \Delta 76$	1592	
	373	1709	1825	1942	2058	2194	2291	2407	2523	2639	2755	116
	374	${ }^{23} 72$	2988	3104	3220	3336	3453	3566	3584	3800	3 y .5	
	${ }_{3} 75$	4031	4147	4263	4379	4494	4610	4726	4341	$49^{5} 7$	5072	
	${ }^{3} 76$	5188	5303	54.9	5534	5650	${ }_{5}^{5765}$	588 c	5996	6111	6236	115
, Logarithm	327]	$63 \underline{4}$	6457	${ }^{65} z^{2}$	6687	6802	${ }_{6}^{6917}$	$7{ }^{7} 82$	7147	7262	7^{377}	
			433	!	7836	7951	8065	8181	8295	8410	8535	
				B	8983	9097	9212	9326	9441	9555	9669	114
	381	580925	${ }_{1039}$	1153	1266 1267	.241 1381	.355 1495	.46 c 1608	1783	.697 1836	1811 1950	
	382	2063	2177	2291	2404	2518	263r	2745	2358	2972	3085	
	383	3199	3312	3426	3539	3652	3765	3879	3992	4105	$42: 8$	113
	$\frac{384}{385}$	4331	4444	4557	4670	47^{83}	4895	5009	5122	52.35	5348	
	385	5661	5574	5686	5799	5912	6024	6137	6250	6362	6475	
	386	6587	6700	$68: 12$	6925	${ }^{7} \mathbf{0 3} 7$	7149	7262	$7^{3} 74$	7486	7599	112
	387	7711	7823	7935	8047	8160	8272	8384	8496	8608	8730	
	388	8832	8944	9056	9167	9279	9391	9503	9515	97^{26}	9838	
	389	9950	..6x	. 173	. 284	. 396	${ }^{5} 507$. 619	$\cdot 7^{3} \mathrm{O}$.842	$\cdot{ }^{-9} 5$	
	390	591065	1176	1287	1399	1510	1621	1732	1843	$1{ }^{\text {c } 55}$	2066	111
	3 gr	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175	
	392	3286	3397	3508	3618	3729	3840	3950	4061	4171	4282	
	393	4393	4503	46:4	4794	4834	4945	5055	5165	5976	5386	110
	394	$5.4{ }^{6}$	5606	${ }^{5} 717$	5827	5937	6047	6157	6267	${ }^{63} 77$	6487	
	395	6597	6707	68:7	6927	$7{ }^{\circ} \mathrm{O} 7$	7145	7256	7366	7476	7586	
	396	$7{ }^{6} 9^{5}$	7^{805}	7914	8034	8134	8943	8353	846a	8579	8681	
	397	8791	8900	9009	9119	9228	9337	9446	9556	9665	9774	109
	398	9883	9992	. 101	. 210	. 319	. 423	. 537	. 546	$\cdot 755$. 864	
	399	600973	1082	1191	1299	1408	1517	1625	1734	1843	${ }^{1951}$	
	400	2060	2169	2277	2386	2494	2603	2711	2319	2928	3036	108
	401	3144	3253	3361	3469	3577	3686	3794	3 yoz	4010	41.8	
	402	4226	4334	4442	4550	4658	4766	4874	4982	5089	5197	
	403	5305	5413	55aI	5628	5736	5844	5951	6059	6166	6374	
	404	6381	6489	6596	6704	6811	6919	7026	7133	7341	7348	107
	405	745	7562	7669		7^{884}	7991	8098	8ao5	8312	84.9	
	406	8526	8633	8740	8847	8954	9061	9167	9274	9381	9488	
	407	9594	9701	9808	9914	$\ldots 21$. 128	. 234	. 341	. 447	. 554	
	408	6ro56o	${ }^{\circ} 76$	0873	0979	1086	119a	1298	1405	1511	16.7	106
	N.	0	1	2	3	4	5	6	7	8	9	D.
	\%	119	12	24	36	48	60	71	83	95		
		118	12	24	35	47	59	71	33	94	106	
		117	12	23	35	47	${ }^{5} 9$	70	83	94	105	
		${ }_{116} 115$	12	23	35 35	46	58	70	31 31	9^{3}	104	
		$115{ }^{\text {c }}$	12	23	35	46	58	69	31	c^{2}	104	
		114 - 113	${ }^{11}$	23	34	46	${ }^{5} 7$	68	80	91	103	
		113 ¢	11	23	34	45	57	68	79	co	102	
		$112{ }^{1}$	11	22	34	45	56	67	78	¢о	101	
		1118	11	22	33	44	56	67	78	89	100	
		110	11	22	33	44	55	66	77	88	99	
		109 H	11	22	33	44	55	65	76	87	98	
		108	11	22	32	43	54	65	76	86	97	
		107	11	21	32	43	54	64	75	86	96	

N.	0	1	2	3	4	5	6	7	8	9	D.
944	974972	5018	5064	5110	5156	5202	5148	5294	5340	5385	46
945	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845	
946	5891	$59^{3} 7$	5983	6029	6075	6iar	6167	6212	6258	6304	
947	6350	63g6	6443	6488	6533	6579	6625	6671	6717	${ }^{6} 763$	
948	68.8	6854	6900	6946	6992	7037	7083	7129	7175	7220	
949	$7{ }^{2066}$	7312	7358	7403	7449	7495	7541	7586	7632	7673	
950	7734	${ }_{77} 79$	$7^{815} 5$	${ }_{7}^{8651}$	7906	7952	7998	8043	8089	${ }_{81}^{81} 35$	
95 I	8181	8226	8273	8317	8363	8409	8454	8500	8546	8591	
952	8637	8683	8728	8774	8819	8865	8911	8956	${ }_{9} 9002$	${ }^{9047}$	
95	9093	9:38	9184	9230	$9^{3} 7^{5}$	9321	9366	9412	9457	9503	
954	95588	9594	9639	9685	${ }^{973}{ }^{3}$	9776	9^{821}	9^{867}	9912	9953	
955 956	980003 0458	-0049	-094	-140	0185 0640	${ }^{0231}$	${ }^{02} 76$	0322	0367	0412	45
956 957	0458	${ }^{5} 503$	0549 1003	-0594	0640 1093	0685 I 39	0730 1184		0821 1275	0867 $\times 320$	
958	I366	14II	1456	${ }^{1501}$	1547	1592	1637	1683	1728	${ }^{1} 773$	
959	1819	1864	1909	1954	2000	2045	2090	2135	2181	2225	
960	227 I	23.6	236a	2407	245a	2427	2543	2588	2633	2678	
961	2723	${ }^{2769}$	3814	2859	2904	2949	2994	3040	3085	3130	
962	3175	3220	3265	3310	3356	3401	3446	3491	3536	358ı	
963	3626	3671	3716	3762	3807	3852	3897	-3942	3987	4032	
964	4077	4 C 22	8167	4212	4.57	43 o 2	4347	4302	4437	4482	
965	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932	
966	4977	5022	${ }^{506} 7$	5112	$5: 57$	5202	5247	5292	${ }_{5}^{53} 7$	5382	
967	5426	5471	5516	5561	5606	5651	5696	5741	5786	5830	
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279	
969	$63=4$	6369	64.3	6458	6503	6548	6593	6637	6682	6727	
970	6772	6817	686:	6906	69^{51}	6996	7040	7085	$7{ }^{130}$	7175	
971	${ }^{7219}$	7264	7^{309}	7353	7398	7443	7488	7532	7577	7622	
979	7666	7711	77^{56}	7^{800}	7^{845}	$7^{8} 9^{\circ}$	7934	7979	8004	8068	
973	8ı13	8157	8203	8247	8291	8336	8381	8425	8470	8514	
974	8559	8604	8648	8693	8737	8782	88.6	8871	8916	8960	
975	9005	9049	9094	9138	$9: 83$	$\underline{927}$	$\underline{9}^{2} \underline{7}^{2}$	$\underline{9}^{31}{ }_{-} 6$	9^{361}	9405	
976	9450	9イ94	$9^{53} 3$	9^{583}							
977	9895	9939	9983	. 28	- N	umbe	for	Log	rith	n	21
978	990339	0383	0428	0472	0° (F	s be	een	99317	and	9321	th
979 980	10783 122 10	0827 1270	0871 1315	O916 I 359	${ }_{1}^{0}$						
${ }^{980}{ }^{81}$	12069	1270 1713	1758	1359 1802	1846	1448 1890	1492 1935	1979	1580 2023	1625 2007	
982	2111	2156	2200	2244	2388	2333	2377	2421	2465	2509	
983	2554	2598	3643	2686	2730	2774	2819	2863	2907	2951	
984	2995	3039	3083	3127	3172	3216	3260	3304	3348	339^{2}	
985	3436	3480	3524	3568	36.3	3657	3791	3745	$3^{3} 7^{8} 9$	3833	
986	3877	${ }^{3} \mathrm{~g} 21$	3.95	4009	4053	4097	4141	4185	4229	4273	
987	4317	4361	4405	4449	4493	4537	458 I	4625	4669	$47{ }^{13}$	
988	$47^{5} 7$	4801	4845	4889	4933	4977	50a1	5065	5108	5 F 5 a	
98 G	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591	
99°	5635	5679	${ }_{5} 723$	5767	5811	5854	5898	5942	5986	6030	
991	6074	$6 \mathrm{Ir}_{17}$	${ }^{6} 165$	6205	62.19	6293	6337	6380	6424	6468	
992	65 t 2	6555	6599	6643	6687	6731	6774	6818	6862	6906	
99^{3}	6949	${ }^{6} 993$	7037	7080	7124	7168	7212	7255	7299	7^{343}	
994	7386	7430	7474	7517	$7{ }^{561}$	7605	7648	7692	77^{36}	7779	
995	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216	
996	8259	83 c 3	8347	8390	8434	. 8477	8521	8564	8608	865a	
997	8695	$87^{3} 9$	87^{83}	8826	8869	8913	8956	youo	9043	9087	
998 999	9131 9565	9174 9609	9218 9652	9261 9696	9305 9739	$\begin{array}{r}9348 \\ \hline 9783\end{array}$	9392 9826	9435	9479	9592	
999	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957	43
N.	0	1	2	3	4	5	6	7	8	9	D.
昜		5 5 4 4	9 9 9 9	14 14 13 13	18 18 18 17	23 23 22 22	28 37 26 26	32 32 3 I 30	37 36 35 34	41 41 40 39	

